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ABSTRACT  

The new generation of sUAS (small Unmanned Aircraft Systems) aims to extend the range of scenarios in which sense-

and-avoid functionality and autonomous operation can be used. Relying on navigation cameras, having a wide field of 

view can increase the coverage of the drone surroundings, allowing ideal fly path, optimal dynamic route planning and 

full situational awareness. The first part of this paper will discuss the trade-off space for camera hardware solution to 

improve vision performance. Severe constraints on size and weight, a situation common to all sUAS components, compete 

with low-light capabilities and pixel resolution. The second part will explore the benefits and impacts of specific wide-

angle lens designs and of wide-angle images rectification (dewarping) on deep-learning methods. We show that distortion 

can be used to bring more information from the scene and how this extra information can increase the accuracy of learning-

based computer vision algorithm. Finally, we present a study that aims at estimating the link between optical design criteria 

degradation (MTF) and neural network accuracy in the context of wide-angle lens, showing that higher MTF is not always 

linked to better results, thus helping to set better design targets for navigation lenses.  
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1. INTRODUCTION  

Recently, UAVs and others autonomous vehicles have democratized. To make such device able to navigate in our world, 

it must be aware of its 3D environment and adapt its trajectory according to it. Severe constraints on size and weight, a 

situation common to all sUAS components, compete with low-light capabilities, high pixel resolution and high 

surroundings coverage, which are desirable for increased navigation capabilities. These constraints and trade-offs led to a 

variety of solutions currently available on the market that will be discussed in the next section. 

Tasks related to navigation are not performed by human, but via computer vision algorithm. Thus, is it important to 

understand how effects that are typically linked with image degradation like lower MTF, or distortion truly affect aspects 

of the computer vision pipeline. Using wide-angle images, especially relevant because of their ability to capture a great 

amount of the device’s surroundings, we determine the effect of different optical characteristics on computer vision, 

specifically for neural networks for object identification. In the third section, we study the influence of distortion 

rectification on pre-trained neural networks. 

In the fourth section, we present a study that aims at estimating the link between optical design criteria degradation (MTF) 

and neural network accuracy. By exploring the effects of image degradation on the computer vision pipeline, we can better 

identify specifications for optical designers allowing to specify optical design requirements on typical metrics (MTF, PSF) 

to obtain the desired performances for the computer vision task considered. 

2. HARDWARE TRADE-OFFS FOR LOW-LIGHT WIDE-ANGLE SUAS NAVIGATION 

CAMERAS 

The sUAS space is extremely fragmented in term of navigation sensing technologies available. This points out the fact 

that there is no one does it all solution and that trade-offs are necessary. We can identify three main competing requirements 

which are ease of integration (size, weight, power consumption), coverage (FoV), and sensing accuracy (range, precision, 

operating scenarios). 
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The principal challenge for sUAS is to comply with the operational requirements, the most important of all being to 

maintain a small size and weight. Each addition in weight will impact power consumption and affect navigation. Each 

addition in size will result in a bigger, less maneuverable drone.  

When cameras for drones are discussed, main payload cameras on gimbals are often referred at. They enjoy a privileged 

place with a considerable allocation of the space and weight dedicated to them in the general structure. This is usually not 

the case for navigation camera, at least not yet. Navigation cameras are currently expected to be extremely small (≤ 20 

mm height for full camera module) and light (≤ 5 g for full camera module) so that the integration on the main frame of 

the drone can be possible. Because the navigation cameras are meant to provide a wide coverage around the aircraft as 

well as 3D information, multiple cameras (4 ~ 8) are necessary, increasing even further the burden of keeping a small size 

and weight. 

The immediate result of this size limitation is a drastic reduction in available sensor technology. High performance low-

light sensors are typically designed with bigger pixel, which mean that to obtain a higher resolution, the sensor, and thus 

the lens paired with it, tend to have a size too big to be a realistic prospect for being a sUAS navigation camera. Solutions 

that are deployed currently for low-light operation are varied and imperfect, as discussed below. They reflect the fact that 

the market is divided on performance target for sUAS. The solutions are presented here as a high-level summary of what 

is on the market.  

The most widespread solution for enabling performance in low-light sense-and-avoid capabilities is onboard illumination. 

Either being visible light, near-infrared, or a mix of both, light emitter is integrated on the drones enabling cameras with 

limited low-light performances to function in darker environments. This solution brings considerable downsides because 

of the additional power requirement and weight. 

Another solution observed is to forfeit coverage. In certain cases, sense-and-avoid functionality in low-light will be limited 

to fewer instruments, for example a thermal camera on the payload, that can only cover a small portion of the drone’s 

surroundings. The effect is to provide limited autonomy and to increase the reliance on a human pilot.  

GPS navigation is often used to facilitate the drone autonomy. It is well-suited to night operation but is very limited outside 

of a sky clear of obstacles. GPS cannot provide the relevant information to safely take-off and land, even less fly reliably 

inside structures or in undergrounds tunnels.  

Scanning LIDAR are sometimes used as part of the main payload. They can map the 3D environment and due to their 

scanning nature, can cover much of the surroundings of the drone. However, today, the important weight and size that 

these systems usually have makes them an unideal choice for sense-and-avoid functionality on drones.  

Time-of-flight, also called flash LIDAR is also used. Their small size makes them attractive for integration. Since the light 

is sent in the whole FoV at once, the power requirement is increased or, as we usually observe, range reduced significantly. 

Another versatile option which we are going to explore in more detail here is the standard miniature wide-angle camera as 

it presents interesting characteristics in term of size and coverage [1]. A typical downside for higher resolution miniature 

sensors is a certain drop in low-light performances compared to bigger sensor with wider pixels. A careful balance must 

be achieved between resolution and pixel light-gathering capabilities. Taking a wide-angle smartphone lens as a general 

example in Figure 1 below, we can observe that when operating in well-lit condition, the system comprising of the lens, 

the sensor and ISP will produce a mostly constant MTF output. However, reduced lighting will result in decreased contrast 

and added noise to the image, thus lowering the MTF. For the purpose of this paper, these effects will be represented in 

first approximation as MTF degradation only and discussed in Section 4.  
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Figure 1. On top, a smartphone using the IMX608 sensor for A) 80 lux, B) 9 lux and C) 1 lux. Below, MTF is shown for the 

top right corner of each image. The corner is the part of the image most susceptible to impact caused by low illumination du 

to its reduced relative illumination in typical miniature wide-angle lens. 

Miniature wide-angle lenses can offer small size and weight while also providing high coverage and performances for 

sense-and-avoid functionality in sUAS. Low-light performances can be increased through careful selection of the sensor 

(lower resolution and better light-gathering capabilities), small f/#, increased spectral band coverage and controlled relative 

illumination. A set of camera module following this design philosophy is in production right now and will provide the 

basis for further experimental studies. 

Covering the visible spectrum and potentially the NiR, the wide field of view paired with the distortion found in this kind 

of lens also present additional challenges and opportunities for machine vision which we will explore in the next section. 

When defining the required specifications for this lens type, typical benchmarks are based on human vision. In the last 

section, we will explore how performance metric can directly impact the computer vision task considered and thus 

influence design targets. 

3. INFLUENCE OF DEWARPING ON NEURAL NETWORK ACCURACY 

In our first experiment, we aimed at understanding and quantifying distortion rectification impact on learning-based 

applications. In our case study of object identification, deep convolutional neural networks are trained to detect and label 

objects from a single input image. To do so, networks extract useful information by processing a succession of 

convolutional and non-linear calculations. This method has proven to be very efficient in multi-scale feature extraction for 

various tasks such as object detection, depth estimation, face recognition and 3D reconstruction. 

A convolutional kernel of constant size is applied on the entire image at each layer of the network. In this context, using 

CNNs implies a translational invariance on the image studied. More precisely, it requires the magnification to be constant 

along image direction. However, this assumption is only true for images represented by the pinhole camera model. Such 

images have limited field of view and will be referred as perspective images. 

On the contrary, traditional wide-angle images have a magnification that will vary from the center toward the edges of the 

image leading to decreasing accuracy when used on neural networks, especially the ones pre-trained on perspective images. 

Indeed, the strong apparent distortion will bend lines and modify object proportion. This effect increases with the field of 

view. 

However, such wide-angle cameras are highly interesting for computer vision community because of their ability to capture 

the entire surroundings of a sUAS with a minimal number of camera modules reducing both weigh, power consumption 

and cost. To be able to analyze such images while keeping acceptable performances, a lot of work have been devoted to 

estimating and rectifying the distortion. With the camera intrinsic parameters, it is possible to recover the 3D coordinates 

in the real world of a pixel on the image. By estimating the distortion parameters, it is then possible to reproject this 3D 

point by considering such rectification resulting in a distortion free perspective image. Such process however leads to pixel 

stretching on the edges of the image and a crop in the field of view is often needed. 
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Additionally, other popular reprojections are investigated for wide-angle images like LatLong panorama and the Mercator 

projection because they represent the entire field of view. Even if this kind of projection cannot fully rectify the distortion, 

the apparent proportion are pleasant for human perception [2]. For this reason, it has become popular to develop new and 

more complex panoramic projection models which aim at reducing the apparent distortion [3,4,5].  

With the democratization of automatic vision task such as object identification, we can wonder if this kind of reprojection, 

which helps to improve human perception using wide-angle images, has the same effect on neural network accuracy. 

Indeed, the translational invariance mentioned before is still not respected but the magnification variations are drastically 

reduced which should help to get closer to performances obtained on distortion free images. 

In our study, we evaluate the improvement induced by such reprojection on object detection. More precisely, we compared 

the accuracy obtained by Yolov4 [6] pre-trained neural network on both datasets: unrectified and rectified. Both datasets 

containing around 1500 images. The first one contains unrectified wide-angle images captured in the streets of Montreal 

from a car. The camera used was a panomorph lens with a field of view of 180°. For the second dataset, we used a distortion 

rectification algorithm on the first dataset to obtain images on perimeter projection. We tested our algorithm on our private 

dataset for qualitative results and PixSet dataset for quantitative study [7]. Both were composed of pictures taken with 

panomorph lenses from the front of a car. 

We used yolov4 pretrained on narrow-angle dataset MsCOCO [8]. This dataset consists in 328 000 narrow-angle images 

with 80 different classes of objects labelled. We chose to use yolov4 because it is widely used in different industries and 

its architecture have proven very efficient. The pre-trained option was chosen to maximize that amount of data available 

for this study. 

We sampled our datasets and took around 1200 images to realize the experiment. For each image and each object detected, 

yolov4 outputs its label, the coordinates of the bounding box, and the confidence score associated with the detection. We 

compared each detection with the ground truth annotation and measured the performances using precision and recall. 

Each object detection was categorized either as true positive (TP) if the object is detected by Yolov4 and labelled similarly 

to the reference annotation, or false positive (FP) if it’s detected but not correctly labelled or even not present in the 

reference objects detected. Each detection was weighted by the confidence score output, like that a correct detection with 

a higher score will increase more importantly the network accuracy. In the same way, a false positive with a higher score 

constitute a bigger mistake from the network and will then have a bigger impact on the accuracy drop. Then, we counted 

the missed detection as false negative (FN). From the total number of TP, FP and FN representing all detections, we could 

compute two different metrics to evaluate yolov4 accuracy. They are summed up in Figure 2 below.  

 

Figure 2. Visualization of Precision and Recall 

First, precision represents the ratio between the number of objects correctly detected (TP) and all the object detected 

(TP+FP). This metrics will then evaluate the number of hallucinated objects by yolov4 compared to the total number of 

detections performed by the network 

Proc. of SPIE Vol. 11870  1187009-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

On the other hand, measuring the recall allow us to quantify the sensitivity of the network by computing the ratio between 

the number of objects correctly detected (TP) and the total number of objects to detect (TP+FN). This metric will highlight 

the number of missed detections compared to all objects detectable, according to the reference annotations, on the images. 

We did not count non-detected objects that were occluded as they were hidden on the image. We computed both metrics 

for both datasets and obtained results summarized in Table 1. 

Table 1. Results obtain with MsCOCO narrow-angle pretrained Yolov4 on PixSet for object identification 

 Non-rectified Rectified Relative 

Improvement 

Precision (%) 70.5  74 + 5.0% 

Recall (%) 35 37 + 5.7% 

 
For both datasets, we can notice that the overall performances on both metrics are very low compared to state-of-the-art 

results. This can be explained by the structural difference between images taken for training and our test datasets. We still 

obtained results comparable to other similar studies on wide angle images [9]. Moreover, we can see that the results on 

the rectified dataset are better than in both precision and recall. We found out that the relative improvement for both metrics 

reached at least 5% which is non-negligeable, especially in application such as autonomous driving where a missed 

detection can be a pedestrian crossing the street.  

We completed our study with a qualitative analysis of the results. By analyzing the images, we found out that most missed 

detection on non-rectified images that are correctly detected on the rectified dataset happen on the edges of the image 

where the distortion is the most noticeable. Moreover, it was harder in the first dataset to detect further or truncated objects 

or those under challenging lightning conditions as shown in Figure 3 below. We will further investigate in this direction 

with a quantitative spatial analysis of the performances.  

After this study, we concluded that distortion rectification can help improving neural network accuracy. Because of this 

process, the images have a structure closer to those used in the training dataset. However, this process remains time 

consuming, and the perimeter view is still limited to a 140 degrees field of view. With the democratization of wide-angle 

imaging systems, it is getting easier to collect dataset of such images and some works have tried to directly use them for 

training. For example, PixSet dataset provides wide-angle images annotated for different tasks from 3D point cloud 

estimation to object classification. 

 

 
Figure 3. Examples of challenging detection on non-rectified images from our dataset  

With such advance, recent works [8] focus on directly training neural networks on wide-angle images to keep the entire 

field of view analyzed without any post processing operation. Even if performances remain lower than for perspective 

images, some works showed interesting results on such images. Particularly, some work [10] focus on evaluating the 
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impact of nonlinear distortion for single image depth estimation. They simulated images from three wide-angle system 

with different distortion functions. Such lenses can capture a field of view of 180 degrees, as a fisheye presents a linear 

distortion, panomorph lenses introduce non linearities to induce augmented resolution on a region of interest (ROI) of the 

image. By training identical networks for single image depth estimation, with images simulated from these different 

systems, they showed that nonlinear distortion can help improving neural network accuracy. By using panomorph lenses 

with a specific region of interest during the training, the network accuracy was increased within this ROI. Thanks to that, 

it is possible to locally improved performances. 

In the same direction, other recent works focus on linking optical design characteristics and metrics to computer vision 

tasks [11]. Indeed, metrics such as PSF or MTF are used by optical designers to evaluate the image quality provided by an 

optical system. So far, such metrics are optimized to fit a pleasant image for human perception, but it is still not clear how 

does a neural network will precisely react to an MTF degradation for example. In a recent experiment, we tried to 

understand and quantify the impact of PSF degradation on pretrained yolov4 for object detection as before. The goal is to 

help optical designer to determine characteristics for their design that will ensure the required performances for a computer 

vision application. 

4. EFFECT OF IMAGE DEGRADATION OF MACHINE VISION ALGORITHM 

PERFORMANCES 

To realize such experiment, we simulated images having different PSF from the same scene. We used PixSet to get wide-

angle images. We considered that the images were perfect, meaning that the PSF was diffraction limited. We simulated 

the degradation due to MTF modifications using the PSF as described below.  

We can entirely simulate the rendering through an optical design using the PSF. Indeed, a PSF represents the image 

corresponding to a point in the object space. It will give us information on the shape, and the lightning on the camera 

sensor. It is then possible to simulate the effect of an optical design by convolving the initial image, representing the scene 

to image, with this PSF. In this 2D convolution, the PSF will act like the convolutional kernel which size in pixel will be 

adjusted to fit the size of a pixel on the sensor. Each pixel of the initial image will be convolved to simulate the 

corresponding airy disk on the sensor. However, a PSF is spatially varying. Off-axis aberration for example, will appear 

only for wider field of view. To process the convolution, each pixel must be convolved with the PSF corresponding to its 

field of view. In this way, for a single image, different PSF must be estimated and a sampling in the field of view must be 

done.  

 
Figure 4. Representation of the PSF used to simulate MTF degradations (MTF degrades from top to bottom, left to right) 

Our work aims at estimating the impact of PSF degradation on object detection. The first approach we chose was to apply 

the same PSF on the entire field of view. We were then able to have preliminary results even if the degradation will be 

uniform on the image.  
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For our experiment, we generated 7 different PSF, shown in Figure 4, from an optical design. To do so we simply estimated 

the PSF at different field of view for this design. Each PSF was represented by an 128x128 RGB image. We had access to 

the width in micron for each of them. Before applying such PSF on the image, we had to resample them to match the 

resolution of a sensor. We generated five different resolutions: 14x14, 30x30, 45x45, 60x60 and 75x75.  14x14 was chosen 

to fit a pixel size on the sensor of 3,5um used in PixSet set up. Then we simply increased the resolution to see the effect 

of a wider PSF, meaning a bigger degradation.  

In this way, we could generate 35 different datasets composed of 200 images, 5 for each of the seven PSF by doing a 2D 

convolution on the entire image. We generated images in gray scale from PixSet dataset as shown in Figure 5.  

 

Figure 5.  A) Original PixSet image. B) Example of a degraded image. C) PSF used for uniform convolution with A) to 

obtain B) with a 128x128 resolution. 

The top left PSF represented in Figure 4 corresponds to a diffraction limited system, it will be considered as the ideal PSF. 

We took the value of the MTF for each of the generated PSF and could compute the relative MTF degradation for each 

PSF taken. We tested yolov4 on each dataset and used the same metrics as before, precision and recall evaluating the 

network accuracy. The F1 score corresponds to an average of both metrics:  

  𝐹1 =
2𝑃𝑅 

𝑃+𝑅
 (1) 

When we look at the results presented in Figure 6 below, we can first notice that for a single PSF, the performances are 

lower when the resolution taken is higher (as a higher resolution means a bigger PSF) but they all follow the same trend. 

For further studies we then just consider one of the resolutions for each PSF. After computing the results, we calculated 

the relative drop in network accuracy compared to the reference PSF as a function of the relative MTF degradation. We 

found out that the network accuracy decreases with MTF degradation. Particularly, F1 score has a relative drop of 3% 

(relative F1 score) when MTF degradation is around 17% and reaches 4.5% when the degradation reaches 40%.  
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Figure 6. Quantitative results. From top to bottom: Precisions, Recall and F1-score obtained on a subset of PixSet. For 

each row, the absolute values are presented on the left and the relative drop on the right  

An interesting thing to notice in this study is that for the precision, the MTF degradation leads to better results even if the 

improvement was not significant compared to the other metrics (below 1%). This can be explained by the fact that, with 

blurrier image, yolov4 will not notice further objects that can be detected but misclassified with a better MTF. This should 

be confirmed by testing more images in the future.  

With this study, we showed that a better MTF tends to improve neural networks accuracy even if it can lead to additional 

misclassification. It is interesting to notice that by computing the results as a function of the MTF, we only consider the 

contrast on the image. However, we could notice than even with a low MTF degradation, a PSF with higher geometrical 

degradation led to a significant drop in the performances. This is noticeable for the PSF leading to 26% of MTF 

degradation. We can see that the performances are lower than for the rest of the PSF. However, if we look at the 

corresponding PSF in Figure 4, we can see that it contains much more aberrations than the others. The PSF is wider and 

more distorted even if the degradation in the MTF is reasonable.  

This last observation let us think that the MTF has a lower impact than aberrations in learning-based application which 

confirms the results seen in [11]. They also observed that for this kind of application, the performances are optimized with 

a sharper PSF on the region of interest for example on the top of the image and on the side in the case of traffic light 

identification. It would be interesting to investigate this observation in the future by improving the image simulation. By 

computing a spatially varying distortion we will be able to observe the relative performances on the same image at different 

field of view. 
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5. CONCLUSION 

Miniature wide-angle lenses are more commonly used for autonomous vehicle navigation as they can offer small size and 

weight while also providing high coverage and performances for sense-and-avoid functionality in sUAS. Design targets 

like distortion, MTF, PSF can be controlled at the design level to maximize machine vision algorithm performances, 

making it the optimal solution. Additionally, low-light performances can be increased through careful selection of the 

sensor (lower resolution and better light-gathering capabilities), small f/#, increased spectral band coverage and controlled 

relative illumination. A set of camera module following this design philosophy is in production right now and will provide 

the basis for further experimental studies. 

Distortion and MTF degradation impact on learning-based computer vision algorithm were explored. It was shown that 

distortion can lead to reduced accuracy in the case of neural network trained for narrow-angle images, but that in the case 

of especially variant distortion across the field, training new networks can lead to increased performances in specific part 

of the field of view compared to dewarped images. Effect of MTF and PSF were explored, showing a significant 

dependency on PSF shape, not always visible from a MTF representation standpoint. Future work will cover spatially 

variable PSF on the same image, thus allowing a better representation of an actual optical system and guiding optical 

design parameters definition for machine vision systems. 
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